Parametric Sensitivity Analysis Using Large-Sample Approximate Bayesian Posterior Distributions

نویسندگان

  • Gordon Hazen
  • Min Huang
چکیده

W a decision analyst desires a sensitivity analysis on model parameters that are estimated from data, a natural approach is to vary each parameter within one or two standard errors of its estimate. This approach can be problematic if parameter estimates are correlated or if model structure does not permit obvious standard error estimates. Both of these difficulties can occur when the analysis of time-to-event data—known as survival analysis—plays a significant role in the decision analysis. We suggest that in this situation, a largesample approximate multivariate normal Bayesian posterior distribution can be fruitfully used to guide either a traditional threshold proximity sensitivity analysis, or a probabilistic sensitivity analysis. The existence of such a large-sample approximation is guaranteed by the so-called Bayesian central limit theorem. We work out the details of this general proposal for a two-parameter cure-rate model, used in survival analysis. We apply our results to conduct both traditional and probabilistic sensitivity analyses for a recently published decision analysis of tamoxifen use for the prevention of breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-sample Bayesian posterior distributions for probabilistic sensitivity analysis.

In probabilistic sensitivity analyses, analysts assign probability distributions to uncertain model parameters and use Monte Carlo simulation to estimate the sensitivity of model results to parameter uncertainty. The authors present Bayesian methods for constructing large-sample approximate posterior distributions for probabilities, rates, and relative effect parameters, for both controlled and...

متن کامل

Economics 551 - B : ECONOMETRIC METHODS

The first issue is whether one ought to use of Bayesian or Classical methods of inference. I will briefly cover Bayesian methods which have been revitalized given recent developments in monte carlo simulation and numerical integration. Nevertheless, Bayesian methods are still computationally burdensome and heavily linked to particular parametric functional forms, limiting their applicability to...

متن کامل

AABC: approximate approximate Bayesian computation for inference in population-genetic models.

Approximate Bayesian computation (ABC) methods perform inference on model-specific parameters of mechanistically motivated parametric models when evaluating likelihoods is difficult. Central to the success of ABC methods, which have been used frequently in biology, is computationally inexpensive simulation of data sets from the parametric model of interest. However, when simulating data sets fr...

متن کامل

Bayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions

The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Decision Analysis

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2006